Publikationer vid avdelningen för Betongbyggnad

Senast publicerade artiklar från avdelningen för Betongbyggnad

Reliability-based alarm thresholds for structures analysed with the finite element method

Civil engineering structures are commonly monitored to assess their structural behaviour, using alarm thresholds to indicate when contingency actions are needed to improve safety. However, there is a need for guidelines on how to establish thresholds that ensure sufficient safety. This paper therefore proposes a general computational algorithm for establishment of reliability-based alarm thresholds for civil engineering structures. The algorithm is based on Subset simulation with independent-component Markov chain Monte Carlo simulation and applicable with both analytical structural models and finite element models. The reliability-based alarm thresholds can straightforwardly be used in the monitoring plans that are developed in the design phase of a construction project, in particular for sequentially loaded structures such as staged construction of embankments. With the reliability-based alarm thresholds, contingency actions will only be implemented when they are needed to satisfy the target probability of failure.

Influence of air voids in multiphase modelling for service life prediction of partially saturated concrete

The purpose of this study is to show the influence and significance of including water filling of air pores when studying moisture conditions in concrete structures cast with air-entrained concrete and in contact with free water. Especially if the aim is to assess the risk for frost damages in different regions of the structure, based on a critical degree of saturation, in order to ultimately perform a service life prediction. A hygro-thermo-mechanical multiphase model that includes the effect of water filling in air pores, recently presented by the authors, is briefly described and applied in two numerical examples. The results show moisture distributions that would not be possible to capture without the air pore filling included in the model. More importantly, the general shape of these distributions complies well with measured distributions in real concrete structures as well as with distributions obtained in laboratory measurements.

Investigation of non-linear drying shrinkage for end-restrained shotcrete of varying thickness

Tunnels in hard, jointed rock are commonly reinforced with shotcrete (sprayed concrete) applied directly on the irregular rock surface. The thickness for such linings can be as small as 50 mm, which result in a fast drying. The resulting shrinkage of the restrained lining is a well-known phenomenon, which leads to cracking. The installation of drainage systems also results in an end-restrained shotcrete lining that is more prone to shrinkage cracking. The drying process is a complex problem that depends on multiple factors such as cement content, porosity and ambient air conditions (i.e. temperature, relative humidity and wind speed). Two numerical models capable of capturing the structural effects of drying shrinkage were compared in this study. It was found that inclusion of non-linear drying shrinkage is important for accurately describing crack initiation in an end-restrained shotcrete slab. The best fit to the experimental data was obtained when the rate of drying was described as a non-linear decreasing function.

Modelling aspects to predict failure of a bolt-anchored fibre reinforced shotcrete lining

 Tunnels in hard and jointed rock are normally excavated with an arch shape to enable the rock to carry itself. The arch effect depends on the stability of individual blocks and too high or too low horizontal stresses could cause blocks to be pushed out or to fall down. To prevent this, systematic rock bolting in combination with fibre reinforced sprayed concrete (FRSC) is commonly used to support the rock. To understand the failure mechanism of the lining when subjected to the load from one block is therefore important for the design. In this paper, the three main failure mechanisms for a rock support shotcrete lining has been identified as failure in the fibre reinforced concrete, bond failure between shotcrete and rock or failure of rock bolts. For each of the failure modes, a short review of numerical methods is presented followed by a selection of a preferred modelling approach. The selected methods are then verified against experimental results from the literature. The selected methods all shows good agreements with tests and demonstrates the ability to simulate each failure mode one by one.

Supplementary Cementitious Materials and Additives – Effective Measures to Hinder Radon in Concrete

The second largest cause of lung cancer is related to radon (222Rn) and its progenies in our environment. Building materials, such as concrete, contribute to the production of radon gas through the natural decay of 238U from its constituents. The Swedish Cement and Concrete Research Institute (CBI) has examined ten different concrete recipes containing an additive or Supplementary Cementious Material (SCM), such as fly ash, slag or silica and combinations thereof. The SCM´s were added in small to moderate portions and substituted the reference Portland cement (OPC). The inputs of an additive as well as a supplementary cementitious material were made as a mean to investigate their potential influence on the radon exhalation rates of the concrete as well as the radon gas diffusion length (L) that could be expected from the different recipes. Measurements were performed with an ATMOS 33 ionizing pulsation chamber. The results indicate a reduction of the exhalation rate by approximately 10-55 % depending on recipe at an RH of 75 %. The diffusion coefficients, corrected for background subtraction vary in the interval 1.1 x 10-10 – 7.6 x 10-12 m2/s. The diffusion lengths vary between 2 and 9 mm. In the case where the largest reduction of the exhalation rate is achieved, this roughly correspond to >2 mSv per year decrease in effective dose to a human. Consequently, using an additive or a SCM, as part of the mix, would be an option to effectively lower the radon gas exhalation in their initial stage of production. Secondly, the use of additives and SCM´s will contribute to a lower environmental impact (CO2).

Reduction of Radon Gas in Concrete Using Admixtures and Additives

The second largest cause of lung cancer is related to radon (222Rn) and its progenies in our environment. Building materials, such as concrete, contribute to the production of radon gas through the natural decay of 238U from its constituents. The Swedish Cement and Concrete Research Institute (CBI) has examined three concrete recipes where only an additive as well as fly ash were added as single constituents to a reference recipe and compared to a reference concrete. The inputs of an additive as well as a supplementary cementitious material (fly ash) were made as a mean to investigate their potential influence on the radon exhalation rates of the concrete. Measurements were performed with an ATMOS 33 ionizing pulsation chamber for at least five different occasions for each recipe during a 22 month period. The results indicate a reduction of the exhalation rate by approximately 30-35 % for each altered recipe. This means roughly 1.5-2 mSv per year decrease in effective dose to a human using an additive or a supplementary cementitious material such as fly ash in relation to the investigated standard concrete.

Till sidans topp