Skip to main content

Evaluation of Low Temperature Damage in Asphalt Mixtures with Non-Contact Resonance Testing

Time: Thu 2020-12-10 14.00

Location: Through Zoom: https://kth-se.zoom.us/j/66814536386, Du som saknar dator/datorvana kan kontakta amirsh@kth.se / Use the e-mail address if you need technical assistance, Stockholm (English), Stockholm (Swedish), Stockholm (English)

Subject area: Civil and Architectural Engineering, Building Materials

Doctoral student: Abiy Bekele , Byggnadsmaterial

Opponent: Professor William Buttlar, University of Missouri

Supervisor: Docent Denis Jelagin, Byggnadsmaterial

Abstract

Thetemperature induceddamage in asphalt mixtureshas always been a major distress that requires a substantialconsiderationin the asphalt industry. One of the most important aspects of studying temperature induceddamage is developing a practical test method for evaluation of the material’s resistanceto it. Hence, there is a growing interest in developing testing methodologieswhich are more efficient, less expensive and simpler to perform than the conventional test methods. Impact resonance testing is a well-documented non-destructive testing method,and ithas been successfully appliedon asphalt mixturesto measure their elastic and viscoelastic properties. This research aims at extending the impact resonance testing methodology to characterization of temperature induced damage in asphalt mixtures and to investigate experimentally and numerically damage induced in asphalt mixtures due to thermomechanical mismatch between the masticand aggregate phases.In order to improve temperature control and thus accuracy of the resonance testing, an automated non-contact test procedure is developedwith a loudspeakerutilized as a source of excitation.The developed methodology has been evaluatedfor a range of asphalt concrete materialsand temperatures. The measurementsobtained from the new method have been verified by taking similar resonance frequency measurements usinganinstrumented impact hammer. Results from this work show that repeatable fundamental resonance frequency measurements can be performed onadisc shaped specimen in an automated manner without the need to open thethermal chamberthat is used to condition test specimens.Investigationsofmicro-damage in asphalt concrete due to differential thermal contraction during cooling cycles havebeen carried out experimentally by using the developedautomated non-contact resonance testingcombined withcyclic cooling. The results of the experimental work haveshown the initiation of low temperature micro-damage and a hysteretic behavior of stiffness modulus during thethermal cycles. Energy based micro-mechanical model is also utilized in order to characterize themicro-crackinitiation and growthin asphalt concrete due to cyclic low temperature variations.Results of this approach have indicated the initiation of micro-cracksat low temperatures as well as the decrease in their length with increase in temperature. In order to obtain a quantitative insight into the temperature induced damage formation, a micromechanical finite element model (FEM) of asphalt mixture

under thermal loading is developed. The model is used to investigate the damage evolution during the thermal cycles as well as its effect on material’s stiffness. Four cases ofmastic-aggregate combinations aremodelledin order to investigate effects of aggregate gradation as well as of masticpropertieson the thermal damage evolution. Cohesive Zone Model (CZM) isused to define aggregate-masticinterface so that an initiation of micro-damage due to differential thermal contraction can be probedin terms of its effect on the overall stiffness modulus. It is observed numerically that during the thermal cycles, thermal damage is initiated at the aggregate-mastic interface due to the differential contraction of mastic. It is also shown that the modelling observations are in qualitative agreement with the experimental findings from the resonance testing. Accordingly, the proposed modelling approach is a viable tool for evaluation of theeffect of asphalt mixture design on its resistance to thermally induced damage.

urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-285934

Page responsible:biblioteket@kth.se
Belongs to: News & Events
Last changed: Nov 19, 2020