Publikationer vid avdelningen för Betongbyggnad

Senast publicerade artiklar från avdelningen för Betongbyggnad

  • Measurement of ice pressure on a concrete dam with a prototype ice load panel

    This paper presents the development and installation of a prototype ice load panel and measurements of ice load from February 2016 to February 2018 at the Rätan hydropower dam in Sweden. The design of the 1 × 3 m2 panel enables direct measurement of ice pressure on the concrete surface is based on previous experience from similar measurements with sea ice. Important features of the design are sufficient height and width to reduce scale effects and to cover the ice thickness and variations in water level. The Rätan dam was chosen based on several criteria so that the ice load is considered to be reasonably idealized against the dam structure.

    For the three winters 2016, 2016/2017, 2017/2018, the maximum ice load recorded was 161 kN/m, 164 kN/m and 61 kN/m respectively. There were significant daily fluctuations during the cold winter months, and the daily peak ice loads showed a visual correlation with the daily average temperature and with the daily pattern of operation of the power station with its corresponding water level variations.

  • Flow Expansion and Deflection Downstream of a Symmetric Multi-gate Sluice Structure

    A sluice structure with multiple gates is often followed by an enlarging channel downstream. Experiments are conducted for different enlargement ratios in cross-section and Froude numbers at the gates. A large-scale PIV system is adopted to capture the surface flow field for examination of the flow features. The study shows that, despite the centrally placed sluice structure with symmetric outflow, a hydraulic jump occurs and the main flow downstream exhibits, in terms of expansion and deflection, a high degree of asymmetry and formation of large circulation zones. The degree of deflection increases significantly along the longitudinal direction for all the enlargement ratios except the smallest. The toe of the hydraulic jump is controlled at the upper edge of the sloping surface downstream of the gates. In light of outflow width, Froude number and enlargement ratio, the flow is classified into three regions. Immediately downstream, the effect of outflow width gradually decreases with increasing Froude number. Further downstream, the degree of deflection augments with increasing enlargement ratio, with circulation zones. At a given cross-section, the degree of expansion is positively related to the enlargement ratio. The study is expected to provide guidance for examination of similar issues of flow pattern and erosion protection design.

  • Lessons Learned Regarding Cracking of a Concrete Arch Dam Due to Seasonal Temperature Variations

    Dams located in cold areas are subjected to large seasonal temperature variations and many concrete dams have cracked as a result. In the 14th International Commission on Large Dams (ICOLD) Benchmark Workshop, a case study was presented where contributors should predict the cracking and displacements due to seasonal variations. In this paper, the conclusions from this case study are presented. Overall, the results from the contributors are well in line with the observations that can be made on the dam and the measurements performed. This shows that using non-linear numerical models is a suitable tool to accurately predict cracking and estimate the displacements of cracked dams. This case study also highlighted important aspects that need special consideration in order to obtain realistic results that can be used to predict the crack pattern, these being: (1) the importance of performing transient thermal analyses based on robin boundary conditions; (2) the influence of contact formulation between the concrete dam and the foundation; and (3) the use of realistic non-linear material properties. The results and conclusions presented in this paper constitute one important step in achieving best practices to estimate dam safety and better understand the potential failure modes and ageing of concrete dams.

  • Progressive Failure Analysis of a Concrete Dam Anchored with Passive Rock Bolts

    Passive rock bolts are commonly used to anchor concrete dams, and they may have a significant impact on stability-evaluations. However, these bolts are often omitted from dam safety analysis due to uncertainties regarding their condition and the size of displacements required in the dam-rock interface to mobilize significant bearing forces in the passive rock bolts. This paper address the latter question by studying the failure process of a small concrete dam anchored with rock bolts. Failure simulations were performed with the increased density method in a finite element model consisting of a dam, the corresponding part of the rock and rock bolts. Two types of approaches are used to simulate the anchorage of the rock bolts; a method where the anchorage to the rock is simulated using a fixed boundary condition; and a method where the anchoring of the bolts are modelled using springs. Depending on the method of analysis, the rock bolts contribute with 40–75% of the load-carrying capacity of the dam. The rock bolts increase the load-bearing capacity of the dam, partly through anchorage forces, but also by keeping the contact surface between rock and concrete together and thereby increase the shear capacity of the interface.

  • Reliability-based alarm thresholds for structures analysed with the finite element method

    Civil engineering structures are commonly monitored to assess their structural behaviour, using alarm thresholds to indicate when contingency actions are needed to improve safety. However, there is a need for guidelines on how to establish thresholds that ensure sufficient safety. This paper therefore proposes a general computational algorithm for establishment of reliability-based alarm thresholds for civil engineering structures. The algorithm is based on Subset simulation with independent-component Markov chain Monte Carlo simulation and applicable with both analytical structural models and finite element models. The reliability-based alarm thresholds can straightforwardly be used in the monitoring plans that are developed in the design phase of a construction project, in particular for sequentially loaded structures such as staged construction of embankments. With the reliability-based alarm thresholds, contingency actions will only be implemented when they are needed to satisfy the target probability of failure.

  • On the behaviour of con-crete at early-ages: A multiphase description of hygro-thermo-chemo-mechanical properties

    Understanding the early-age behaviour of concrete is of importance for designing durable concrete structures. To contribute to the improvement of this, a hygro-thermo-chemo-mechanical model is presented that accounts for phenomena such as hydration, external and internal drying, self-heating, creep, shrinkage and fracture. The model is based on a multiphase porous media framework, using the Thermodynamically Constrained Averaging Theory (TCAT) as starting point to derive the governing equations of the system. This allows for a systematic treatment of the multiscale properties of concrete and how these develop during hydration, e.g. chemical and physical fixation of water. The proposed mathematical model is implemented within the context of the Finite Element Method (FEM), where all physical fields are solved in a fully-coupled manner. Chosen properties of the model are demonstrated and validated using three experimental results from the literature. Generally, the simulated results are in good agreement with the measurements.

Tillhör: Institutionen för byggvetenskap
Senast ändrad: 2020-05-15