Publications at the division of Concrete Structures

Latest publications from the division of Concrete Structures

  • Measurement of ice pressure on a concrete dam with a prototype ice load panel

    This paper presents the development and installation of a prototype ice load panel and measurements of ice load from February 2016 to February 2018 at the Rätan hydropower dam in Sweden. The design of the 1 × 3 m2 panel enables direct measurement of ice pressure on the concrete surface is based on previous experience from similar measurements with sea ice. Important features of the design are sufficient height and width to reduce scale effects and to cover the ice thickness and variations in water level. The Rätan dam was chosen based on several criteria so that the ice load is considered to be reasonably idealized against the dam structure.

    For the three winters 2016, 2016/2017, 2017/2018, the maximum ice load recorded was 161 kN/m, 164 kN/m and 61 kN/m respectively. There were significant daily fluctuations during the cold winter months, and the daily peak ice loads showed a visual correlation with the daily average temperature and with the daily pattern of operation of the power station with its corresponding water level variations.

  • Flow Expansion and Deflection Downstream of a Symmetric Multi-gate Sluice Structure

    A sluice structure with multiple gates is often followed by an enlarging channel downstream. Experiments are conducted for different enlargement ratios in cross-section and Froude numbers at the gates. A large-scale PIV system is adopted to capture the surface flow field for examination of the flow features. The study shows that, despite the centrally placed sluice structure with symmetric outflow, a hydraulic jump occurs and the main flow downstream exhibits, in terms of expansion and deflection, a high degree of asymmetry and formation of large circulation zones. The degree of deflection increases significantly along the longitudinal direction for all the enlargement ratios except the smallest. The toe of the hydraulic jump is controlled at the upper edge of the sloping surface downstream of the gates. In light of outflow width, Froude number and enlargement ratio, the flow is classified into three regions. Immediately downstream, the effect of outflow width gradually decreases with increasing Froude number. Further downstream, the degree of deflection augments with increasing enlargement ratio, with circulation zones. At a given cross-section, the degree of expansion is positively related to the enlargement ratio. The study is expected to provide guidance for examination of similar issues of flow pattern and erosion protection design.

  • Progressive Failure Analysis of a Concrete Dam Anchored with Passive Rock Bolts

    Passive rock bolts are commonly used to anchor concrete dams, and they may have a significant impact on stability-evaluations. However, these bolts are often omitted from dam safety analysis due to uncertainties regarding their condition and the size of displacements required in the dam-rock interface to mobilize significant bearing forces in the passive rock bolts. This paper address the latter question by studying the failure process of a small concrete dam anchored with rock bolts. Failure simulations were performed with the increased density method in a finite element model consisting of a dam, the corresponding part of the rock and rock bolts. Two types of approaches are used to simulate the anchorage of the rock bolts; a method where the anchorage to the rock is simulated using a fixed boundary condition; and a method where the anchoring of the bolts are modelled using springs. Depending on the method of analysis, the rock bolts contribute with 40–75% of the load-carrying capacity of the dam. The rock bolts increase the load-bearing capacity of the dam, partly through anchorage forces, but also by keeping the contact surface between rock and concrete together and thereby increase the shear capacity of the interface.

  • Performance of data-based models for early detection of damage in concrete dams

    A failure of a massive concrete dam could cause catastrophic consequences. The purpose of monitoring is to detect anomalies and damage at an early stage to prevent failure. Data-based models for anomaly detection are based on the hypothesis that the behaviour of an undamaged dam will follow an expected pattern, and deviation from this pattern is an indication of damage. In this study, simulations were used to create time series for an undamaged dam and three different damage scenarios at three different locations in the dam body. Three common data-based models were used to predict a dams crest displacements, both on the generated artificial data and the corresponding measurements from the dam. Prediction bands for future measurements were created, and the ten time-series were used to test the ability to detect damage. All models could detect instantaneous damage but struggle to detect progressive damage; the Neural network outperforms the two regression models. The choice of the mathematically optimal threshold limit leads to a large number of false alerts. Requiring three consecutive values outside the threshold before an alert is issued, increases the possibility to receive an early alert compared to the standard approach where observations are classified individually. © 2020, © 2020 Informa UK Limited, trading as Taylor & Francis Group.

  • Closure to "modeling and Prototype Testing of Flows over Flip-Bucket Aerators" by Penghua Teng and James Yang
Page responsible:webmaster@byv.kth.se
Belongs to: Department of Civil and Architectural Engineering
Last changed: Feb 18, 2014